Catalytic Transformation of Bio-oil to Benzaldehyde and Benzoic Acid: An Approach for the Production of High-value Aromatic Bio-chemicals

Author:

Wu Xiaoping1,Zhu Lijuan1,Zhu Changhui2,Wang Chenguang2,Li Quanxin1

Affiliation:

1. Department of Chemical Physics, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean Energy, University of Science & Technology of China, Hefei 230026, China

2. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Abstract

Benzaldehyde and benzoic acid are high-value aromatic chemicals and important intermediates in chemical industry, and the catalytic conversion of biomass-based sources to these aromatic chemicals is of great significance in both academic and industrial fields. This work demonstrated that bio-oil was directionally converted into benzaldehyde and benzoic acid by three-step process under atmospheric pressure and moderate temperatures. The process included the catalytic cracking of biooil into aromatics over 1% Ga/HZSM-5 catalyst, followed by the dealkylation of heavier alkylaromatics to toluene over Re/HY catalyst and the liquid-phase oxidation of toluene-rich aromatics to the targeted chemicals over CoCl2/NHPI (CoCl2/N-Hydroxyphthalimide) catalyst. The production of benzaldehyde and benzoic acid from the bio-oil-derived aromatics, with the overall selectivity of 86.8%, was achieved using CoCl2/NHPI catalyst at 100 °C. Furthermore, adding a small amount of methanol into the feed would efficiently suppress the coke formation, and thus, enhance the yield of aromatics. Potentially, the novel synthesis route offers a green way for the production of higher value-added aromatic chemicals using renewable and environmentally friendly biomass-based sources.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3