Facile Synthesis of Quinolines in Water

Author:

Borah Gongutri1ORCID,Borah Preetishmita2ORCID,Bhuyan Arnav1ORCID,Banik Bimal Krishna3ORCID

Affiliation:

1. Chemical science and technology división, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India

2. Agrionics, v1(a), CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh, 160030, India

3. Research Development & College of Natural Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia

Abstract

Reactions in water have demonstrated numerous surprising results. The effects of water in these reactions may include significant physical and chemical interactions with the substrates and catalysts through polar effects and hydrogen bonding ability. In some instances, water is also able to interact with the intermediates of reactions and possibly with the transition states of chemical processes. Organic synthesis in water encourages the researchers to follow the principles of green chemistry. Among heterocyclic compounds, quinoline scaffold has become an important motif for the development of new drugs. They are widely found in pharmaceuticals as well as in agrochemical industry. Over the last few decades, numerous reports have been documented to access quinoline derivatives with structural diversity, either by new annulation or by ring functionalization. This review summarizes an overview of the synthesis and functionalisation of quinoline scaffolds in an aqueous medium. This method may encourage researchers to adopt green chemistry and to apply these environmentally safe methods in designing important heterocyclic cores.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3