Green Synthesis of Oxoquinoline-1(2H)-Carboxamide as Antiproliferative and Antioxidant Agents: An Experimental and In-Silico Approach to High Altitude Related Disorders

Author:

Ali AmenaORCID,Ali AbuzerORCID,Warsi Musarrat Husain,Rahman Mohammad Akhlaquer,Ahsan Mohamed JawedORCID,Azam FaizulORCID

Abstract

At high altitudes, drops in oxygen concentration result in the creation of reactive oxygen and nitrogen species (RONS), which cause a variety of health concerns. We addressed these health concerns and reported the synthesis, characterization, and biological activities of a series of 10 oxoquinolines. N-Aryl-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)carboxamides (5a–j) were accessed in two steps under ultrasonicated irradiation, as per the reported method. The anticancer activity was tested at 10 µM against a total of 5 dozen cancer cell lines obtained from nine distinct panels, as per the National Cancer Institute (NCI US) protocol. The compounds 5a (TK-10 (renal cancer); %GI = 82.90) and 5j (CCRF-CEM (Leukemia); %GI = 58.61) showed the most promising anticancer activity. Compound 5a also demonstrated promising DPPH free radical scavenging activity with an IC50 value of 14.16 ± 0.42 µM. The epidermal growth factor receptor (EGFR) and carbonic anhydrase (CA), two prospective cancer inhibitor targets, were used in the molecular docking studies. Molecular docking studies of ligand 5a (docking score = −8.839) against the active site of EGFR revealed two H-bond interactions with the residues Asp855 and Thr854, whereas ligand 5a (docking = −5.337) interacted with three H-bond with the residues Gln92, Gln67, and Thr200 against the active site CA. The reported compounds exhibited significant anticancer and antioxidant activities, as well as displayed significant inhibition against cancer targets, EGFR and CA, in the molecular docking studies. The current discovery may aid in the development of novel compounds for the treatment of cancer and oxidative stress, and other high altitude-related disorders.

Funder

Taif University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3