Solid Lipid Nanoformulation of Berberine Attenuates Doxorubicin Triggered in vitro Inflammation in H9c2 Rat Cardiomyocytes

Author:

Gupta Pooja1ORCID,Rawal Shalini1ORCID,Bhatnagar Priyanka1,Yadav Harlokesh Narayan1,Dinda Amit Kumar2

Affiliation:

1. Department of Pharmacology, AIIMS, New Delhi, India

2. Department of Pathology, AIIMS, New Delhi, India

Abstract

Aim: To evaluate berberine solid lipid nanoparticles' efficacy against doxorubicin-induced cardiotoxicity. Background: Berberine (Ber) is cardioprotective, but its oral bioavailability is low and its effect in chemotherapy-induced cardiotoxicity has not been studied. Objective: Solid lipid nanoparticles (SLNs) of berberine chloride were prepared, characterized and evaluated in vitro against Doxorubicin induced cardiomyocyte injury. Methodology: Berberine loaded SLNs (Ber-SLNs) were synthesized using water-in-oil microemulsion technique with tripalmitin, Tween 80 and poloxamer 407. Ber-SLNs were evaluated for preventive effect against toxicity of Doxorubicin in H9c2 cells. The culture was pre-treated (24 h) with Ber (10 µM) and Ber-SLNs (1 and 10 µM) and exposed to 1 µM of Doxorubicin (Dox) was added for 3 h. The cell viability (LDH (Lactate dehydrogenase) assay and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)), levels of Creatine kinase-MB (CK-MB), Nitrite, MDA (Malondialdehyde), ROS (Reactive oxygen species) generation and apoptotic DNA (Deoxyribonucleic acid) content were assessed. Results: Ber-SLNs had a mean particle size of 13.12±1.188 nm, zeta potential of -1.05 ± 0.08 mV, poly-dispersity index (PDI) of 0.317 ± 0.05 and entrapment efficiency of 50 ± 4.8%. Cell viability was 81  0.17% for Ber-SLNs (10 µM) and 73.22  0.83% for Ber (10 µM) treated cells in MTT assay. Percentage cytotoxicity calculated from LDH release was 58.91  0.54% after Dox, 40.3  1.3% with Ber (10 µM) and 40.7  1.3% with Ber-SLNs (1 µM) (p<0.001). Inflammation and oxidative stress markers were lower with Ber and Ber-SLNs. Attenuation of ROS generation and apoptosis of cardiomyocytes were noted on fluorescence microscopy. Conclusion: Ber loaded SLNs effectively prevented Doxorubicin-induced inflammation and oxidative stress in rat cardiomyocytes. The results demonstrate that microemulsion is a simple, cost-effective technique to prepare Ber-SLNs and may be considered as a drug delivery vehicle for berberine.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3