Obese Mouse Fat Cell-derived Extracellular Vesicles Transport miR-99a- 5p to Mitigate the Proliferation and Migration of Non-small Cell Lung Cancer Cells

Author:

Zhai Shengping1,Li Xiaoping2,Lin Tiantian3

Affiliation:

1. Department of General Practice, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China

2. Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China

3. Respiratory Intensive Care Unit, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China

Abstract

Objective: Fat cells-derived extracellular vesicles (FC-EVs) play a role in regulating the tumor microenvironment in cancers by transporting RNAs. MicroRNAs (miRNAs) are vital regulators of cancer development. This study was conducted to explore the role of FC-EVs in the proliferation and migration of non-small cell lung cancer (NSCLC) cells, providing targets for NSCLC treatment. Methods: The obese mouse model was established via high‐fat diet (HFD), followed by separation and characterization of FC-EVs (HFD-EVs). The levels of miR-99a-5p, precursor-miR-99a-5p, and heparan sulfate-glucosamine 3-sulfotransferase 3B1 (HS3ST3B1) were measured by RT-qPCR or Western blot assay. Cell proliferation and migration were evaluated by 3-(4, 5-dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide and wound healing assays. The expression of Cy3-labeled miR-99a-5p in A549 cells (one NSCLC cell line) was observed via confocal microscopy. The binding of miR-99a-5p to HS3ST3B1 was analyzed by the dual luciferase assay. Rescue experiments were performed to confirm the role of HS3ST3B1 in NSCLC cells. Results: miR-99a-5p was upregulated in adipose tissues, FCs, and HFD-EVs. HFD-EVs mitigated the proliferation and migration of NSCLC cells. HFD-EVs transported miR-99a-5p into A549 cells, which upregulated miR-99a-5p expression and inhibited HS3ST3B1 expression in A549 cells. HS3ST3B1 overexpression reversed the inhibition of HFD-EVs on the proliferation and migration of NSCLC cells. Conclusion: HFD-EVs transported miR-99a-5p into NSCLC cells and inhibited HS3ST3B1, thereby inhibiting proliferation and migration of NSCLC cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3