Author:
Fakhfakh Mohamed,Bouaziz Bassem,Gargouri Faiez,Chaari Lotfi
Abstract
Aims:
Prognosis of lung mathology severity after Covid-19 infection using chest X-ray time series
Background:
We have been inspired by methods analysing time series of images in remote sensing for change detection. During the current Covid-19 pandemic, our motivation is to provide an automatic tool to predict severity of lung pathologies due to Covid-19. This can be done by analysing images of the same patient acquired at different dates. Since no analytical model is available, and also no accurate quantification tools can be used due to many unknowns about the pathology, feature-free methods are good candidates to analyse such temporal images.
Objective:
This contribution helps improving performances of medical structures facing the Covid-19 pandemic. The first impact is medical and social since more lives could be saved with a 92% rate of good prognosis. In addition to that, patients in intensive care units (up to 15%) could a posteriori suffer from less sequels due to an early and accurate prognosis of their PP. Moreover, accurate prognosis can lead to a better planning of patient’s transfer between units and hospitals, which is linked to the second claimed economical impact. Indeed, prognosis is linked to lower treatment costs due to an optimized predictive protocol using ragiological prognosis.
Methods:
Using Convolutional Neural Networks (CNN) in combination with Recurrent Neural Networks (RNN). Spatial and temporal features are combines to analyse image time series. A prognosis score is delivered indicating the severity of the pathology. Learning is made on a publicly available database.
Results:
When applied to radiological time-series, promising results are obtained with an accuracy rates higher than 92%. Sensitivity and specificity rates are also very interesting.
Conclusion:
Our method is segmentation-free, which makes it competitive with respect to other assessment methods relying on time-consuming lung segmentation algorithms. When applied on radiographic data, the proposed ProgNet architecture showed promising results with good classification performances, especially for ambiguous cases. Specifically, the reported low false positive rates are interesting for an accurate and personalised care workflow.
Publisher
Bentham Science Publishers Ltd.
Subject
Radiology Nuclear Medicine and imaging
Reference59 articles.
1. Chaari L, Golubnitschaja O.
Covid-19 pandemic by the “real-time” monitoring: the Tunisian case and lessons for global epidemics in the context of 3PM strategies.
EPMA J
2020;
(10223):
1-6.
2. Huang C, Wang Y, Li X, et al.
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet
2020;
395
(10223)
: 497-506.
3. Gautret P, Lagier J-C, Parola P, et al.
https://www.mediterranee- infection.com/wp-content/uploads/2020/03/COVID-IHU-2-1.pdf
2020.
4. Sohrabi C, Alsafi Z, O’Neill N, et al.
World health organization declares global emergency: A review of the 2019 novel coronavirus (covid-19).
Int J Surg
2020.
5. Li Heng, Liu Shang-Ming, Yu Xiao-Hua, Tang Shi-Lin.
Coronavirus disease 2019 (covid-19): current status and futureperspective
International journal of antimicrobial agents
2020;
105951.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献