Identification of Tyrosinase Inhibitory Peptides from Sea Cucumber (Apostichopus japonicus) Collagen by in silico Methods and Study of their Molecular Mechanism

Author:

Chen Hui12,Yao Yourong3,Xie Tingyu1,Guo Honghui12,Chen Sijin12,Zhang Yiping12,Hong Zhuan12

Affiliation:

1. Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen361005, China

2. Xiamen Ocean Vocational College, Xiamen361022, China

3. Faculty of Social Sciences, University of Macau, Macau, China

Abstract

Aims: Identify novel tyrosinase inhibitory peptides from sea cucumber (Apostichopus japonicus) collagen using in silico methods and elucidate the molecular interaction mechanism. Background: Tyrosinase is a key enzyme in the melanin biosynthesis pathway, to restrain melanin production and reduce the appearance of associated skin diseases, inhibition of tyrosinase activity is one of the most effective methods. Objective: The collagen from Apostichopus japonicus, which consists of 3,700 amino acid residues, was obtained from the National Center for Biotechnology Information (NCBI) as the accession number of PIK45888. Method: Virtual hydrolyzed method was used, and the peptides generated were compared to the previously established BIOPEP-UWM database. In addition, peptides were examined for their solubility, toxicity, and tyrosinase-binding capacity. Result: A tripeptide CME with optimal potential inhibitory activity against tyrosinase was identified, and its inhibitory activity was validated by in vitro experiments. The IC50 value of CME was 0.348 ± 0.02 mM for monophenolase, which was inferior to the positive control peptide glutathione, while it had an IC50 value of 1.436 ± 0.07 mM for diphenolase, which was significantly better than glutathione, and the inhibition effect of CME on tyrosinase was competitive and reversible. Conclusion: In silico methods were efficient and useful in the identification of new peptides.

Funder

Fujian Science and Technology Plan Project

Xiamen Science and Technology Plan Project

Beihai Science and Technology Plan Project

Publisher

Bentham Science Publishers Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3