Structure and Performance Evaluation of Fractional Lower-Order Covariance Method in Alpha-Stable Noise Environments

Author:

Ahmed Areeb1,Savaci Ferit Acar1

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir, Turkey

Abstract

Background: All existing time delay estimation methods, i.e. correlation and covariance, depend on second or higher-order statistics which are inapplicable for the correlation of alpha-stable noise signals. Therefore, fractional lower order covariance is the most appropriate method to measure the similarity between the alpha-stable noise signals. Methods: In this paper, the effects of skewness and impulsiveness parameters of alpha-stable distributed noise on fractional lower order covariance method have been analyzed. Results: It has been found that auto-correlation, i.e. auto fractional lower order covariance,\ of non delayed alpha-stable noise signals follows a specific trend for specific ranges of impulsiveness and skewness parameters of alpha-stable distributed noise. The results also depict that, by maintaining the skewness and impulsiveness parameters of α-stable noise signals in a certain suggested range, better auto-correlation can be obtained between the transmitted and the received alpha-stable noise signals in the absence and presence of additive white Gaussian noise. Conclusion: The obtained results would improve signal processing in alpha-stable noise environment which is used extensively to model impulsive noise in many noise-based systems. Mainly, it would optimize the performance of random noise-based covert communication, i.e. random communication.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3