Sign of slant receiver for skewed alpha-stable noise shift keying-based random communication system

Author:

Ahmed Areeb,Savaci Ferit Acar

Abstract

Purpose In contrast to traditional communication systems, slower data rate has always remained a weak link for non-traditional random communication systems (RCSs), which use alpha-stable (a-stable) noise as a carrier. This paper aims to introduce a fast receiver for skewed a-stable noise shift keying (SkaSNSK)-based RCSs. Design/methodology/approach The introduced receiver is based on the sign of slant estimator (SoSE), which provides rapid estimation of the skewed a-stable random noise signals (RNSs) received from the additive white Gaussian noise channel. The SoSE-based receiver minimizes the number of samples required to extract the encoded information from the received RNSs. This is achieved by manipulating the antipodal properties of the slant/skewness parameter of the a-stable carrier. Hence, a high data rate with relatively low complexity is guaranteed. Findings In comparison with the previously introduced sinc, logarithmic and modified extreme value method-based receivers, the proposed SoSE-based receiver also achieves improved bit error rate (BER) along with the better covertness values so that the essence of security provided by SkaSNSK-based RCSs remains intact. Research limitations/implications Because of the selected range of the associated parameters of the a-stable noise as a carrier, the BER vs MSNR results are may lack applicability for the complete range of values. Therefore, further research is required to produce results in different ranges. Practical implications The study includes implications for the hardware development based on the proposed communication scheme. Originality/value It can be seen that the paper fulfils the desired need of a fast receiver design for RCS.

Publisher

Emerald

Reference27 articles.

1. Random communication system based on skewed alpha-stable levy noise shift keying;Fluctuation and Noise Letters,2017

2. Measure of covertness based on the imperfect synchronization of an eavesdropper in random communication systems”,2017

3. Synchronization of skewed alpha-stable levy noise based random communication system;IET Communications,2018

4. On optimizing fractional lower order covariance-based synchronization method for random communication systems,2018

5. Structure and performance evaluation of fractional lower-order covariance method in alpha-stable noise environments;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3