Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator Environment with Codes Prepared in Matlab

Author:

SİĞERGÖK Bülent1,ÇAVAŞ Mehmet2

Affiliation:

1. Graduate School of Natural and Applied Sciences, Fırat University, Elazığ, Turkey, bulentsigergok02010@gmail.com

2. Fırat University, Technology Faculty, Mechatronic Engineering, Elazığ, Turkey, mcavas@firat.edu.tr

Abstract

Real-time applications of autonomous systems are simulated in the computer environment to ensure that they operate error-free or with minimal errors. Coppeliasim, used in this field, is a platform where several sample models, robots, sensors and actuators are used together, a virtual world is created and interacted with it throughout the working period. Having a comprehensive toolbox, autonomous vehicle training and virtual reality, Coppeliasim's compatibility with Solidworks, a very useful design program for drawing, seems to be a great advantage. Due to these features, CoppeliaSim is very important in predicting and solving problems that may arise in many different applications. The propeller movement of the drone, which we designed with the Solidworks 2020 program and transferred to the Coppeliasim platform using the URDF exporter method, was carried out with the Coppeliasim simulator. In our work, Coppeliasim is synchronized with the simulator and MATLAB API codes. While the drone propellers were working on the Coppeliasim platform, angular speed and timing controls were made using the codes we prepared in the MATLAB program. Additionally, this work shows that drones or different autonomous systems can be controlled and designed before real-time operation using the Coppeliasim simulator and the MATLAB program.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

Subject

Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3