Dynamic safety of active trailer steering systems

Author:

Odhams A M C1,Roebuck R L1,Cebon D1,Winkler C B2

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, UK

2. Transport Research Institute, University of Michigan, Ann Arbor, MI, USA

Abstract

The dynamic safety of an active steering system for an articulated heavy goods vehicle is investigated. The vehicle is a tractor semi-trailer with two independently steerable axles on the trailer. Several different vehicle dynamics modelling approaches are used to investigate the aspects of the safety of the steering system. These include ‘back of envelope’ calculations, a single degree-of-freedom yaw model, a simplified yaw-plane model using Matlab SimMechanics, with realistic controller frequency response assumptions, and a complex multi-body model of the whole vehicle using TruckSim. Specific safety issues of concern associated with the primary active steering function are: (a) the necessary actuation bandwidth for stable response at high speeds, and (b) the performance implications of disturbance rejection requirements, e.g. side winds and split friction braking. It is found that vehicle tracking improves with increased bandwidth up to 8.3 Hz, but beyond this, performance is limited by other factors. Also, the steering system is able to reject off-tracking disturbances from side winds and split-friction braking, although the latter has a small effect. Additional ‘failsafe’ issues of concern are: (a) whether an independent centring system is necessary on each steerable axle or whether failure of an axle can be safely managed by steering the remaining axles in opposition, (b) the force levels needed in the automatic safety centring system, and (c) the maximum slew rate for centring the axles in an emergency. It is found that individual centring systems for each axle are necessary because axle ‘opposition’ is not a safe strategy for a trailer with two steered axles. The steering actuator is required to generate 32 kN during all modes of operation in order to maintain safety during the specified manoeuvre. A maximum steering slew rate of 11°/s is found to limit additional lateral acceleration to less than 0.2 g.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3