Theoretical and experimental investigation of the effect of oil aeration on the load-carrying capacity of a hydrodynamic journal bearing

Author:

Goodwin M. J.1,Dong D1,Yu H1,Nikolajsen J. L.1

Affiliation:

1. Faculty of Computing, Engineering and Technology, Staffordshire University, Beaconside, Stafford, UK

Abstract

It is widely assumed that the presence of air bubbles in the lubricating oil of a hydrodynamic bearing gives rise to a reduced load-carrying capacity, because of the high compressibility and low viscosity of the air and its tendency, therefore, to upset the hydrodynamic effect. The aim of the work described in the current paper was to investigate the accuracy of this assumption by theoretical and experimental means, and also to provide quantitative data relating to the concentration of air bubbles and their size that are required for any discernible effect. The paper has the following three main contributions: (a) a theoretical model based on Reynolds equation, but modified to allow for the effect of aeration on lubricant viscosity and density, is proposed; (b) a novel method of injecting air bubbles into lubricating oil and for measuring their size and concentration was developed; and (c) an experimental hydrodynamic bearing test rig was implemented and run with both aerated and non-aerated lubricating oil, and in each case measurements of the load-carrying capacity for various operating speeds were made. The results from both theoretical and experiment work show that the presence of air bubbles in the lubricating oil leads to a slight decrease in bearing load-carrying capacity at high operating speeds. For normal operating speeds, however, (i.e. those resulting in eccentricity ratios greater than 0.6) results show that the presence of air bubbles has little effect on bearing load-carrying capacity.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3