Improved infrared temperature mapping of elastohydrodynamic contacts

Author:

Reddyhoff T1,Spikes H A1,Olver A V1

Affiliation:

1. Department of Mechanical Engineering, Imperial College, London, UK

Abstract

An effective means of studying lubricant rheology within elastohydrodynamic contacts is by detailed mapping of the temperature of the fluid and the bounding surfaces within the lubricated contact area. In the current work, the experimental approach initially developed by Sanborn and Winer and then by Spikes et al., has been advanced to include a high specification infrared (IR) camera and microscope. Besides the instantaneous capture of full field measurements, this has the advantage of increased sensitivity and higher spatial resolution than previous systems used. The increased sensitivity enables a much larger range of testable operating conditions: namely lower loads, speeds, and reduced sliding. In addition, the range of test lubricants can be extended beyond high shearing traction fluids. These new possibilities have been used to investigate and compare the rheological properties of a range of lubricants: namely a group I and group II mineral oil, a polyalphaolephin (group IV), the traction fluid Santotrac 50, and 5P4E, a five-ring polyphenyl-ether. As expected, contact temperatures increased with lubricant refinement, for the mineral base oils tested. Using moving heat source theory, the measured temperature distributions were converted into maps showing rate of heat input into each surface, from which shear stresses were calculated. The technique could therefore be validated by integrating these shear stress maps, and comparing them with traction values obtained by direct measurement. Generally there was good agreement between the two approaches, with the only significant differences occurring for 5P4E, where the traction that was deduced from the temperature over-predicted the traction by roughly 15 per cent. Of the lubricants tested, Santotrac 50 showed the highest average traction over the contact; however, 5P4E showed the highest maximum traction. This observation is only possible using the IR mapping technique, and is obscured when measuring the traction directly. Both techniques showed the effect of shear heating causing a reduction in traction.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3