Affiliation:
1. University of Cambridge Department of Engineering Cambridge, UK
2. The Math Works Cambridge, UK
Abstract
This paper introduces a class of passive interconnected suspensions, defined mathematically in terms of their mechanical admittance matrices, with the purpose of providing greater freedom to specify independently bounce, pitch, roll, and warp dynamics than conventional (passive) suspension arrangements. Two alternative realization schemes are described that are capable of implementing this class (under ideal assumptions). The first scheme incorporates an interconnected multilever arrangement consisting of four separate hydraulic circuits, which transforms the separate wheel station displacements to bounce, pitch, roll, and warp motions. Four separate mechanical admittances are connected across the transformed terminals of the multilever. The second scheme is kinematically equivalent to the first but the multilever part consists of four modular subsystems to achieve the same kinematic transformation. The purpose of the class is to allow a high degree of independence between the modes of vehicle motion, e.g. low warp stiffness independent of front and rear anti-roll stiffness. Practical issues that might be involved in implementing the realization schemes are discussed, as well as generalizations to two-and six-wheeled vehicles.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献