Vehicle yaw-inertia- and mass-independent adaptive steering control

Author:

Wang J1,Hsieh M F1

Affiliation:

1. Department of Mechanical Engineering, Ohio State University, Columbus, Ohio, USA

Abstract

This paper describes a vehicle stability control (VSC) system using a vehicle yaw-inertia- and mass-independent adaptive control law. As a primary vehicle active control system, VSC can significantly improve vehicle driving safety for passenger cars and enhance trajectory tracking accuracy for other applications such as autonomous, surveillance, and mobile robot vehicles. For the designs of vehicle dynamic control systems, vehicle yaw inertia and mass are two of the most important parameters. However, in practical applications, vehicle yaw inertia and mass often change with vehicle payload and load distribution. In this paper, an adaptive control law is proposed to treat the vehicle yaw inertia and mass as unknown parameters and automatically address their variations. For the proposed adaptive control law, asymptotic stability of the yaw rate tracking error was proved by a Lyapunov-like analysis for certain vehicle architectures under some reasonable assumptions. The performance of the yaw-inertia- and mass-independent adaptive VSC system was evaluated under several driving conditions (i.e. double lane changing on a slippery surface and braking on a split- μ surface tests) through simulation studies using a high-fidelity full-vehicle model provided by CarSim®.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Payload Parameter Sensitivity Analysis on Observation Accuracy of Lightweight Electric Vehicles;International Journal of Automotive Technology;2023-09-09

2. A Review on Vehicle-Trailer State and Parameter Estimation;IEEE Transactions on Intelligent Transportation Systems;2021

3. Driver Model-Based Fault-Tolerant Control of Independent Driving Electric Vehicle Suffering Steering Failure;Automotive Innovation;2018-01

4. Investigation of the tyre characteristics under non-steady-state conditions on the basis of road tests;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2016-08-05

5. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers;Mechanical Systems and Signal Processing;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3