Integrated control of braking energy regeneration and pneumatic anti-lock braking

Author:

Zhang J-Z1,Chen X1,Zhang P-J1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People's Republic of China

Abstract

This paper mainly focuses on integrated control of the brake system of a hybrid electric vehicle, i.e. the integration of friction braking and regenerative braking during anti-lock braking control and series brake blending during normal deceleration. Based on a series regenerative braking system, the structure of an integrated brake system is proposed. The models of each part of a hybrid electric bus are built in MATLABÆ Simulink, taking authorized articles as references. A test bench with the original pneumatic brake system of a bus is also built to carry out hardware-in-the-loop (HIL) tests of the integrated brake system and to study the characteristics of the system better. The integrated control strategy is proposed on the basis of a pneumatic anti-lock braking strategy. Simulation results show that the participation of regenerative braking in the anti-lock braking control can be beneficial to both the ride comfort and the braking performance of the vehicle. HIL test results validate the results of the simulations. An integrated brake controller is designed and made to carry out the control strategies on board. A field in which further research could be carried out is also proposed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3