A Multi-Source Braking Force Control Method for Electric Vehicles Considering Energy Economy
Author:
Wang Yinhang1ORCID, Zhou Liqing1, Chu Liang1, Zhao Di1, Guo Zhiqi1, Jiang Zewei1
Affiliation:
1. College of Automotive Engineering, Jilin University, Changchun 130025, China
Abstract
Advancements in electric vehicle technology have promoted the development trend of smart and low-carbon environmental protection. The design and optimization of electric vehicle braking systems faces multiple challenges, including the reasonable allocation and control of braking torque to improve energy economy and braking performance. In this paper, a multi-source braking force system and its control strategy are proposed with the aim of enhancing braking strength, safety, and energy economy during the braking process. Firstly, an ENMPC (explicit nonlinear model predictive control)-based braking force control strategy is proposed to replace the traditional ABS strategy in order to improve braking strength and safety while providing a foundation for the participation of the drive motor in ABS (anti-lock braking system) regulation. Secondly, a grey wolf algorithm is used to rationally allocate mechanical and electrical braking forces, with power consumption as the fitness function, to obtain the optimal allocation method and provide potential for EMB (electro–mechanical brake) optimization. Finally, simulation tests verify that the proposed method can improve braking strength, safety, and energy economy for different road conditions, and compared to other methods, it shows good performance.
Reference43 articles.
1. Gao, Y., and Ehsani, M. (2001). Electronic Braking System of EV and HEV—Integration of Regenerative Braking, Automatic Braking Force Control and ABS, SAE International. SAE Technical Papers. 2. Nakamura, E., Soga, M., Sakai, A., Otomo, A., and Kobayashi, T. (2002). Development of Electronically Controlled Brake System for Hybrid Vehicle, SAE International. SAE Technical Papers. 3. Joon, K.S., Woochul, L., and Jung, D. (2022). Electro-Mechanical Brake. (102401769B1), KR Patent. 4. Li, C., Zhuo, G., Tang, C., Xiong, L., Tian, W., Qiao, L., Cheng, Y., and Duan, Y. (2023). A review of electro-mechanical brake(EMB) system: Structure, control and application. Sustainability, 15. 5. Maron, C., and Georg, R. (2006). Method for Actuating an Electromechanical Parking Brake Device. (2006131113A1), US Patent.
|
|