Affiliation:
1. University of Thessaly Mechanical and Industrial Engineering Department Volos, Greece
Abstract
The need to deliver fast-in-market and right-first-time design for ultra-low-emission vehicles at a reasonable cost is driving the automotive industries to invest significant manpower in computer-aided design and optimization of exhaust after-treatment systems. To serve the above goals, an already developed engineering model for the three-way catalytic converter kinetic behaviour is linked with a genetic algorithm optimization procedure, for fast and accurate estimation of the set of tuneable kinetic parameters that describe the chemical behaviour of each specific washcoat formulation. The genetic-algorithm-based optimization procedure utilizes a purpose-designed performance measure that allows an objective assessment of model prediction accuracy against a set of experimental data that represent the behaviour of the specific washcoat formulation over a typical legislated test procedure. The identification methodology is tested on a demanding case study, and the best-fit parameters demonstrate high accuracy in matching the measured test data. The results are definitely more accurate than those usually obtained by manual or gradient-based tuning of the parameters. Moreover, the set of parameters identified by the genetic algorithm methodology is proven to describe in a valid way the chemical kinetic behaviour of the specific catalyst, and this is tested by the successful prediction of the performance of a smaller-size converter. The parameter estimation methodology developed fits in an integrated computer-aided engineering methodology assisting the design optimization of catalytic exhaust systems that extends all the way through from model development to parameter estimation, and quality assurance of test data.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献