Affiliation:
1. The Pennsylvania State University Department of Mechanical and Nuclear Engineering Pennsylvania, USA
2. Ford Motor Company Research and Advanced Engineering Dearborn, Michigan, USA
Abstract
In this research, the advanced hybrid neural network (AHNN) friction-component model, presented in Part 1 of this two-part paper, is integrated with an automotive drivetrain model for system simulations. The AHNN model accurately predicts the dynamic behaviours of transmission friction components over a broad operating range. It also allows variable sampling time steps in a numerical integration process. In this investigation, the AHNN model is trained using experimental data obtained from a powertrain dynamometer test stand. Since typical dynamometer measurements are acquired at locations away from friction components, a backtracking algorithm is developed to evaluate friction component torque during engagement. The trained AHNN model, together with a comprehensive drivetrain model, is implemented to simulate the shifting process of an automatic transmission system under various operating conditions, including different oil-temperature and engine-throttle levels. Simulation results demonstrate that the AHNN friction component model can be effectively utilized as a part of the drivetrain model to accurately predict transmission shift dynamics.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献