Optimization of Cab Vibration Comfort for Construction Machinery Based on Multi-Target Regression Forests

Author:

Zhuang Chao,Wen Hansheng,Ni Xiangyu,Zhang Da,Bao Yangyang,Huang Haibo

Abstract

With the increasing awareness of the importance of environmental protection and the fierce competition in the construction machinery market, improving the vibration comfort of a whole construction machine has become a new focus of competition; therefore, optimizing the performance of cab mounts has become an urgent problem to be solved. At present, the problems of low modeling efficiency, serious technical difficulties, and long development cycles exist in the design and optimization of cab mounts. In this paper, a multi-target regression forests method is introduced into the design and optimization of the construction machinery installation system, which circumvents the traditional complex modeling process and establishes a mapping relationship between cab assembly parameters and the mounts’ stiffness, as well as introduces the system decoupling rate and vibration isolation rate as the boundary conditions. Furthermore, the MRFs method is compared and evaluated with MLRP and Multi-SVR prediction results. Finally, a complete, accurate, and efficient design method for the cab mount system optimization is developed, improving the decoupling rate and vibration isolation rate of the cab system. This design method can predict the stiffness of the mounts in multiple directions.

Funder

National Natural Science Foundation of China

SWJTU Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference36 articles.

1. (2009). Earth-Moving Machinery—Safety—Part 7: Requirements for Scrapers (Standard No. EN 474-7:2007+A1:2009).

2. Configuration and sizing design optimisation of powertrain mounting systems;Cho;Int. J. Veh. Des.,2000

3. Nova, M., Berria, C., Tamburro, A., and Pisino, E. (1997). Noise and Vibration Reduction for Small/Medium Car-Market Segment: An Innovative Approach for Engineering Design and Manufacturing, IMechE.

4. Vehicle interior vibro-acoustical comfort optimization using a multi-objective interval analysis method;Huang;Expert Syst. Appl.,2022

5. Effect of Panhard Rod Cab Suspensions on Heavy Truck Ride Measurements;Ahmadian;SAE Trans.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3