Comprehensive uncertainty analysis of a Wiebe function-based combustion model for pilot-ignited natural gas engines

Author:

Cho H1,Krishnan S R1,Luck R1,Srinivasan K K1

Affiliation:

1. Department of Mechanical Engineering, Mississippi State University, Mississippi, USA

Abstract

This paper presents a comprehensive uncertainty analysis of a Wiebe function-based combustion model for advanced low-pilot-ignited natural gas (ALPING) combustion in a single-cylinder research engine. The sensitivities, uncertainty magnification factors (UMFs), and uncertainty percentage contributions (UPCs) of different experimental input variables and model parameters were investigated. First, the Wiebe function model was validated against experimental heat release/mass burned fraction profiles and cylinder pressure histories for three pilot injection timings (start of injection (SOI)): −20°, −40°, and −60° after top dead center (ATDC). Second, the sensitivities and UMFs of predicted cylinder pressure histories were determined. Finally, crank angle-resolved uncertainties were quantified and mapped as ‘uncertainty bounds’ in predicted pressures, which were compared with measured pressure curves with error bars for cyclic variations. The Wiebe function-based combustion model with a quadratic interpolation equation for the specific heat ratio ( γ) provided reasonable cylinder pressure and heat release/mass burned fraction predictions for all SOIs (better for −20° and −60° ATDC SOIs compared with −40° ATDC). Uncertainty analysis results indicated that γ (parameters in the quadratic interpolation equation), compression ratio, mass and lower heating value of natural gas trapped in the cylinder, overall trapped mass, and ignition delay were important contributors to the overall uncertainty in predicted cylinder pressures. For all SOIs, γ exhibited the highest UPC values (80–90 per cent) and therefore, γ must be determined with the minimum possible uncertainty to ensure satisfactory predictions of cylinder pressure histories. While the importance of γ in single-zone combustion models is well recognized, the specific contribution of the present analysis is quantification of the crank angle-resolved UPCs of γ and other model parameters to the overall model uncertainty. In this paper, it is shown that uncertainty analysis provides a unique methodology for quantitative validation of crank angle-resolved predictions from any type of engine combustion model with the corresponding experimental results. It is also shown that uncertainties in both predicted and measured cylinder pressures and heat release rates must be considered while validating any engine combustion model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3