Transient prediction capabilities of a novel physics-based ignition delay model in multi-pulsed direct injection diesel engines

Author:

Samuel J Jensen1ORCID,Ramesh A1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

This work is an extension of a novel physics-based ignition delay modeling methodology previously developed by the authors to predict physical and chemical ignition delays of multiple injections during steady operations in diesel engines. The modeling methodology is refined in this work to consider the influence of additional operating parameters such as volumetric efficiency, exhaust temperature and pressure on the ignition delay of multiple injections. Computational fluid dynamics predictions on two different engines indicated that the main spray encounters local temperatures about 60 K above average temperatures for about 1 mg of pilot. Hence, the modeling methodology was further refined to include this effect by considering the air mass trapped in pilot spray, computed based on the spray penetration and cone angle and tuned using results of the computational fluid dynamics studies. Comparisons of the ignition delay predictions with the stock boost temperature sensor and a specially incorporated, transient-capable fine wire thermocouple indicated that the measurements with stock sensor could be satisfactorily used for transients. Cycle-by-cycle changes in ignition delay could be predicted accurately when transients were imposed in boost pressure, rail pressure and main injection quantity in a turbocharged intercooled diesel engine controlled with an open engine control unit. Further validations were done even under a transient cycle when the engine was controlled by its stock engine control unit. The same tuning constants could be used for the prediction of the ignition delay under transients on another naturally aspirated engine. This indicates the suitability of the model for application in different engines. Finally, the model was incorporated within an open engine controller, and cycle-by-cycle prediction of ignition delays of the pilot and main injections were done in real time. It was possible to compute the ignition delays in less than 2 ms within engine control unit using the already available sensor inputs within an error band of ±60 µs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3