Modelling the hysteretic characteristics of a magnetorheological fluid damper

Author:

Wang En Rong1,Ma Xiao Qing2,Rakhela S2,Su C Y2

Affiliation:

1. Nanjing Normal University Faculty of Electrical and Electronic Engineering Nanjing, People's Republic of China

2. Concordia University Department of Mechanical Engineering Montreal, Canada

Abstract

A generalized model is proposed to characterize the biviscous hysteretic force characteristics of a magnetorheological (MR) fluid damper using symmetric and asymmetric sigmoid functions on the basis of a fundamental force generation mechanism, observed qualitative trends and measured data under a wide range of control and excitation conditions. Extensive laboratory measurements were performed to characterize the hysteretic force properties of an MR damper under a wide range of magnitudes of control current and excitation conditions (frequency and stroke). The global model is realized upon formulation and integration of component functions describing the preyield hysteresis, saturated hysteresis loop, linear rise and current-induced rise. The validity of the proposed model is demonstrated by comparing the simulation results with measured data in terms of hysteretic forcedisplacement and force-velocity characteristics under a wide range of test conditions. The results revealed reasonably good agreement between the measured data and model results, irrespective of the test conditions considered. The results of the study suggest that the proposed model could be effectively applied for characterizing the damper hysteresis and for development of an optimal controller for implementation in vehicular suspension applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3