Sequential neural network model for the identification of magnetorheological damper parameters

Author:

Delijani Yaser Mostafavi,Cheng ShaohongORCID,Gherib Faouzi

Abstract

Abstract Magnetorheological (MR) dampers exhibit a complex nonlinear hysteresis which makes the modeling of their behavior with parametric or non-parametric models to be challenging. In case of parametric models, the generalization of the parameters identified for a particular excitation is difficult and requires high computation costs. On the other hand, non-parametric models are considered as black-box type with no association to physical phenomena. The objective of this study is to propose a new identification model combining the merits of a parametric model and neural network paradigm. The proposed model is a parametric type which exploits an algebraic model with a hyperbolic tangent hysteresis, while a series multilayer-perceptron (MLP) neural networks are used to identify the model parameters under different excitation conditions. This approach not only preserves the physical meanings of the model parameters but also prompts generalization to common excitation conditions. The data for training the MLP neural networks were generated from a test program on a RD-8041-1 MR damper covering a wide range of input conditions. Results show that the proposed sequential neural network model not only increases the accuracy of the predicted MR damper force but also exhibits higher robustness and better consistency under different excitation conditions than a conventional algebraic model.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3