Optimal shape design of a brake calliper for squeal noise reduction considering system instability

Author:

Soh H J1,Yoo J-H1

Affiliation:

1. School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea

Abstract

Squeal is a noise phenomenon occurring in the last stage of automobile braking with a high-frequency sound. It is very difficult to express the phenomenon using a mathematical model, since the origin of squeal noise is physically complex. However, the possibility of squeal generation can be predicted by solving the vibration equation of the self-excited system using the complex eigenvalue analysis method. The results of the method are expressed as the magnitude of the unstable mode, and the generation of squeal noise can be prevented by reducing the magnitude of the unstable mode of the brake system. The objective of this research is to determine the optimal design process focused on the calliper housing shape to suppress squeal noise generation by reducing the system instability. The objective function is set to minimize the real part of the complex eigenvalue, i.e. the instability index. In the optimization design process, the design variable for topology optimization is established by focusing on the finger part of the calliper housing, which transmits the braking pressure to the pad lining. To supplement the complex shape generated by the topology optimization process, parametric design variables are selected for the subsequent process. Parameters are set to adjust the housing finger stiffness and are defined by considering the topology optimization result. Finally, the asymmetric shape of the calliper housing is obtained to reduce squeal noise generation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3