Spiral landing guidance law design for unmanned aerial vehicle net-recovery

Author:

Yoon S1,Kim H J1,Kim Y1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Institute of Advanced Aerospace Technology, Seoul National University, Seoul, Republic of Korea

Abstract

A spiral landing guidance law is proposed for a net-recovery landing of a fixed-wing unmanned aerial vehicle (UAV). In this study, the net-recovery landing is divided into two phases: a spiral descent phase and a final approach phase. In the spiral descent phase, a spiral descending path is designed from any initial position to a final approaching waypoint. The flight path angle of the UAV is controlled to align with the approaching direction at the end of the spiral descent. In the final approach phase, the aircraft is directly guided from the approaching waypoint to the recovery net by a pseudo pursuit guidance law. Sequential imaginary landing and approaching points are generated using a cubic polynomial in the pseudo pursuit guidance law. Therefore, the UAV at a high altitude with an arbitrary heading angle spirals down towards the recovery net without loitering and flies into the recovery net along a desired approaching path. Six-degree-of-freedom numerical simulation is performed to verify the performance of the spiral descent and final approach guidance laws.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3