A review of jet mixing enhancement for aircraft propulsion applications

Author:

Knowles K1,Saddington A J1

Affiliation:

1. Department of Aerospace, Power, and Sensors, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon, UK

Abstract

This article reviews techniques applicable to enhancing the mixing of jets, with particular emphasis on infrared (IR) signature reduction of high-speed jets. Following a brief introduction to the IR signature of jet plumes and the fundamentals of jet mixing, this paper discusses rapid mixing technologies under the categories of: geometric modifications (to the nozzle); high shear stress mixing; normal stress mixing; self-acoustic excitation; external acoustic excitation; mechanically oscillated; self-oscillated. It is shown that mixing enhancements of the order of 100 per cent are possible with some techniques and that by combining techniques this can be increased by at least as much again. Simple geometric calculations are presented which demonstrate that with rectangular nozzles such high levels of mixing enhancement may be necessary in order to reduce IR signature. Some apparent rapid mixing technologies, however, have been shown to increase jet spreading without increasing entrainment, whereas other techniques can reduce entrainment as easily as they can increase it.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3