Under-Expanded Jets in Advanced Propulsion Systems—A Review of Latest Theoretical and Experimental Research Activities

Author:

Duronio Francesco1ORCID,Villante Carlo1ORCID,De Vita Angelo12ORCID

Affiliation:

1. Department of Industrial Engineering, Information and Economics, Università degli Studi dell’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy

2. Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS), Via G. Marconi 4, 80125 Napoli, Italy

Abstract

The current ongoing rise in environmental pollution is leading research efforts toward the adoption of propulsion systems powered by gaseous fuels like hydrogen, methane, e-fuels, etc. Although gaseous fuels have been used in several types of propulsion systems, there are still many aspects that can be improved and require further study. For this reason, we considered it important to provide a review of the latest research topics, with a particular focus on the injection process. In advanced engine systems, fuel supply is achieved via enhanced direct injection into the combustion chamber. The latter involves the presence of under-expanded jets. Under-expanded jets are a particular kind of compressible flow. For this reason, the review initially provides a brief physical explanation of them. Next, experimental and numerical CFD investigation techniques are discussed. The last section of this manuscript presents an analysis of the jet’s structure. The injection parameters commonly used are examined; next, the characteristics of the near-nozzle field are reviewed and finally, the far-field turbulent mixing, which strongly affects the air–fuel mixture formation process, is discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference114 articles.

1. Joshi, A. (2020). Review of Vehicle Engine Efficiency and Emissions, SAE International. SAE Technical Papers.

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., and Chen, Y. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. International Energy Agency (2021). Tracking Transport 2020, IEA.

4. International Energy Agency (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector, IEA.

5. High-Efficiency and Clean Combustion Natural Gas Engines for Vehicles;Li;Automot. Innov.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3