Control of Flexible Manipulator Systems

Author:

Tokhi M O1,Azad A K M1

Affiliation:

1. Department of Automatic Control and Systems Engineering, The University of Sheffield

Abstract

This paper presents an investigation into the development of open-loop and closed-loop control strategies for flexible manipulator systems. Shaped torque inputs, including Gaussian-shaped and low-pass (Butter-worth and elliptic) filtered input torque functions, are developed and used in an open-loop configuration and their performance studied in comparison to a bang-bang input torque through experimentation on a single-link flexible manipulator system. Closed-loop control strategies that use both collocated (hub angle and hub velocity) and non-collocated (end-point acceleration) feedback are then proposed. A collocated proportional and derivative (PD) control is first developed and its performance studied through experimentation. The collocated control is then extended to incorporate, additionally, non-collocated feedback through a proportional integral derivative (PID) configuration. The performance of the hybrid collocated and non-collocated control strategy thus developed is studied through experimentation. Experimental results verifying the performance of the developed control strategies are presented and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Vibration Control Algorithm of a Flexible Manipulator System;Robotics;2023-05-15

2. Robust Control and Vibration Reduction of a 3D Nonlinear Flexible Robotic Arm;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2022-01-21

3. Control of flexible single-link manipulators having Duffing oscillator dynamics;Mechanical Systems and Signal Processing;2019-04

4. Control Systems;Studies in Computational Intelligence;2013-11-29

5. Dynamical Systems;Studies in Computational Intelligence;2013-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3