The Importance of Multidirectional Motion on the Wear of Polyethylene

Author:

Bragdon C R1,O'Connor D O1,Lowenstein J D1,Jasty M1,Syniuta W D1

Affiliation:

1. Advanced Mechanical Technology Incorporated, Watertown, Massachusetts, USA

Abstract

The development of a new hip simulator for the study of bearing materials used in total hip replacements has led to several findings which add important new information to the understanding of wear process of ultra-high molecular weight polyethylene, the most commonly used bearing material today for total joint replacements. Using this hip simulator which is capable of applying the physiological motion pathways occurring during gait to total hip components which are held in the correct anatomical position under the complex loading conditions of the hip in gait, the authors have shown that physiological motion pathways produce very different wear rates and morphology of the wear surface than unidirectional reciprocating pathways. Scanning electron microscopy studies show striking differences in the morphology of the wear surfaces of the polyethylene depending upon the relative motions of the components. Wear rates, surface morphology and particle debris generation consistent with clinical and retrieved studies are achieved when physiological conditions are simulated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3