Intervertebral Disc Response to Cyclic Loading—An Animal Model

Author:

Ekström L1,Kaigle A1,Hult E1,Holm S1,Rostedt M1,Hansson T1

Affiliation:

1. Department of Orthopaedics, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden

Abstract

The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 per cent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the intitial elastic response.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3