Intervertebral disc creep behaviour through viscoelastic models: an in-vitro study

Author:

Sciortino Vincenza,Jansen Jan Ulrich,Cerniglia Donatella,Ingrassia Tommaso,Wilke Hans-Joachim

Abstract

AbstractThe intervertebral disc (IVD) is a complex biological structure that ensures the spine strength, stability, mobility, and flexibility. This is achieved due to its biphasic nature which is attained by its solid phase (annulus fibrosus) and fluid phases (nucleus pulposus). Hence, the IVD biomechanical response to long-term loads, which is critical as it affects hydration, and nutrients-water transport influencing disc height reduction, has been further explored and mathematically modelled in this paper. An in-vitro study was performed on seven human lumbar spine specimens (L4-5), to assess if the classical rheological models and Nutting's power law can model in a simple way the intermediate characteristics between solid and fluid of the IVD. Creep tests were conducted by applying a static compression load of 500 N for 15 min. A correlation analysis was done (Pearson, p < 0.05) between the model parameters and the maximum value of Disc Height Reduction, followed by a linear regression analysis. In summary, the long-term IVD mechanical behavior was modeled in a simple way, emphasizing that yet there is no mathematical certainty about this mechanical behavior. Hence, a future aim might be to develop intervertebral disc prostheses capable of replicating only the disc mechanical response, without necessarily considering the microscopic-level biological drivers. Therefore, a future goal is to fully understand and model the disc's mechanical response toward the design of new disc prostheses that would consider only the macroscopic aspect, without considering the biological aspects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3