Analysis of Grinding Temperatures by Energy Partitioning

Author:

Rowe W B1,Black S C E1,Mills B1,Qi H S1

Affiliation:

1. AMT Research Laboratory, School of Engineering and Technology Management, Liverpool John Moores University

Abstract

The partitioning of heat between two sliding bodies depends strongly on the relative magnitude of the thermal characteristics of each body. Grinding with the superabrasive CBN (cubic boron nitride) gives the favourable condition of a high thermal conductivity wheel, allowing increased heat to be carried away by the grinding wheel. This reduces the temperatures experienced by the workpiece. In this paper different methods of theoretical partitioning in grinding are reviewed. The partition ratio is the proportion of the total grinding energy that enters the workpiece. The partition ratio in surface grinding was measured using a thermocouple technique. Theoretical models for predicting the partition ratio were correlated with measured results to establish the effective thermal properties of CBN and aluminium oxide abrasives. The effective thermal conductivity of CBN was found to be considerably lower than the reported theoretical value. The findings provide the basis for improved prediction of workpiece temperatures in grinding.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3