Combustion in High-Speed Direct Injection Diesel Engines—A Comprehensive Study

Author:

Winterbone D E1,Yates D A1,Clough E1,Rao K K1,Gomes P1,Sun J-H1

Affiliation:

1. Department of Mechanical Engineering, University of Manchester Institute of Science and Technology, Manchester

Abstract

This paper reports the latest results of a comprehensive project investigating the performance of a Ricardo Hydra direct injection diesel engine. Early work covered a number of aspects of research into the gross behaviour of this engine: this paper concentrates on techniques for obtaining quantitative data from photographs of the combustion process. High-speed photographs, at framing rates up to 20 000 frames/s, were taken using a piston with a quartz bowl, at engine speeds up to 3000 r/min. The pre-combustion period was illuminated using a synchronized copper vapour laser. After the initiation of combustion, the process is self-illuminating and information on the combustion process was obtained by analysing the radiation emitted by the carbon particles. The two-colour method was used to evaluate the temperature of the combustion gases over the full field of view. The images have also been analysed by a cross-correlation technique to obtain velocity information. Tests have been performed on the engine over a wide range of operating conditions, but this paper concentrates on the effect of swirl ratio on combustion. It will be shown that too much swirl increases the ignition delay period and results in an increase in the NOx emissions but a decrease in the soot. It will also be shown that the velocity pattern after combustion is in good agreement with that evaluated by Arcoumanis et al. at the end of compression, which implies that swirl persists through the combustion period despite significant decay.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3