Flame Front Vector and Turbulence Analysis for Varied Equivalence Ratios in an Optical Direct-Injection Spark-Ignition Engine

Author:

Lu Yuwei,Zhang ChengHua,Kook Sanghoon

Abstract

<div>Homogenous lean combustion in a direct-injection spark-ignition (DISI) engine is a promising pathway to achieve significantly improved fuel economy, making already competitive petrol engines even more attractive as a future powertrain option. This study aims to enhance the fundamental understanding of flame growth occurring in a DISI engine with varied charge equivalence ratios of 1.0 to 0.6 while keeping a low compression ratio of 10.5, a typical side-mounted injector, and early injected homogenous charge conditions. A new flame front vector analysis is performed using the flame image velocimetry (FIV) method applied to 100 cycles of high-speed flame movies with trackable contrast variations and pattern changes in the flame boundary. A spatial filtering method is used to decompose the bulk flow component and high-frequency flow component with the latter being interpreted as turbulence. The flame front FIV analysis shows that excess air leads to slower flame front growth and lower turbulence causing an exponential decrease in the burning rate. Compared to the stochiometric charge condition, a leaner mixture with 0.6 equivalence ratio results in an up to 5 m/s decrease in the flame front growth and 3 m/s decrease in the flame front turbulence. Spatial variations increase up to 2.8 times in the flame front vector magnitude and up to 2.25 times in the turbulence, particularly in the early phase of the flame growth. The results suggest a new engine design for higher turbulence generation is required to extend the lean limit, and thus higher fuel economy is achieved in a DISI engine.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3