The Design and Performance of High-Pressure Injectors as Gas Jet Boosters

Author:

Hoggarth M. L.1

Affiliation:

1. Combustion Division, The Gas Council, Midlands Research Station, Wharf Lane, Solihull, Warwickshire

Abstract

Injectors have a large potential application as jet boosters in gas distribution networks by using the gas from high-pressure supplies to boost the pressure of gas from low-pressure holders to that required by the distribution system.A theoretical study of the design and performance of injectors for this purpose is described. A one-dimensional theory which takes friction into account is proposed for predicting the performance of injectors with driving pressure ratios up to 14:1. Optimization of the theoretical equations is carried out so that the most suitable dimensions can be chosen for any specified performance. Alternatively, the best operating conditions for a given geometry may be predicted.Experimental results compared well with predictions from the proposed theory particularly in the region close to the optimum working point. Where deviations did occur these are explained by the excessive recirculation of the driving gas at the inlet to the mixing throat, when operated away from the optimum working point at low injection ratios and high pressure lifts. By moving the driving nozzle closer to the inlet of the throat and dispensing with the inlet cone, marked improvements in performance could be obtained at these off-optimum operating conditions.

Publisher

SAGE Publications

Subject

General Engineering

Reference17 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Design Method for Low-Pressure Venturi Nozzles;Applied Mechanics;2022-04-02

2. Ejectors: applications in refrigeration technology;Renewable and Sustainable Energy Reviews;2004-04

3. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid;International Journal of Energy Research;2001

4. Investigation of Air Driven Ejectors at Elevated Temperatures;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1983-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3