A Design Method for Low-Pressure Venturi Nozzles

Author:

O’Hern Hannah,Murphy Timothy,Zhang XiangORCID,Liburdy James,Abbasi BahmanORCID

Abstract

The purpose of this work is to provide empirical design models for low-pressure, subsonic Venturi nozzles. Experimentally validated simulations were used to determine the effect of nozzle geometry and operating conditions on the suction ratio (ratio of suction mass flow rate to motive mass flow rate) of low-pressure, subsonic Venturi nozzles, over a wide range of geometries and operating conditions, through a parametric study. The results of the parametric study were used to develop seven empirical models, each with a different range of applicability or calculating a different indicator of nozzle performance (i.e., suction ratio, momentum ratio, or dynamic pressure ratio), of the Venturi nozzles using a constrained multi-variable global optimization method. Of the seven empirical models, the best models were found to be those for low- (less than one) and high-suction ratios (greater than one), with mean absolute percentage errors of 5% and 18%, respectively. These empirical models provide a design tool for subsonic, low-pressure Venturi nozzles that is more than an order of magnitude more accurate than a governing equation approach or conventional flow head calculations. These newly-developed empirical models can be applied for initial nozzle design when precise suction ratios are required.

Funder

Advanced Research Projects Agency-Energy

Publisher

MDPI AG

Reference46 articles.

1. Performance evaluation of a model thermocompressor using computational fluid dynamics;Ariafar;Int. J. Mech.,2012

2. Experimental study of the effect of some geometric variables and number of nozzles on the performance of a subsonic air—air ejector

3. Characterization and selection method of Venturi injectors for pressurized irrigation

4. Effects of fertilization and salinity on weed flora in common bean (‘Phaseolus vulgaris’ L.) grown following organic or conventional cultural practices;Bilalis;Aust. J. Crop Sci.,2014

5. Experimental investigations of air and liquid injection by venturi tubes;Okzan;Water Environ. J.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3