Elastohydrodynamic film thickness for shear-thinning lubricants

Author:

Greenwood J. A.1,Kauzlarich J. J.2

Affiliation:

1. University of Cambridge Department of Engineering

2. University of Virginia Department of Mechanical Engineering Charlottesville, Virginia, USA

Abstract

Mineral oils and synthetic lubricants that are thickened by polymers of large molecular weight are being promoted for automobiles as well as aircraft gas turbines. These multiweight lubricants are found to have a complicated Newtonian and non-Newtonian viscosity depending upon shear rate in the bearing. In general, polymer-thickened mineral oil lubricants show a first Newtonian behaviour at a low shear rate, shear-thinning non-Newtonian behaviour at a higher shear rate and a second Newtonian behaviour at a very high shear rate, with a second Newtonian viscosity approximately equal to the base oil viscosity. Because of high shear thinning in the inlet region of rolling element bearings, predicting the film thickness using the low shear rate first Newtonian viscosity can be in error, in particular examples, by a factor of ½ for mineral oil plus 4% methacrylate thickener and 1/7 for mineral oil plus 20% polybutene thickener. The case of naturally shear-thinning silicone fluids is analysed and it is shown that the elastohydrodynamic (EHD) film thickness is nearly the same for silicones with widely varying first Newtonian viscosity. A general EHD analysis for shear-thinning lubricants in pure rolling is presented and shown to agree with known special cases. A closed-form EHD equation for power law shear-thinning lubricants is derived, which gives very accurate results for a bearing where the inlet state of the rolling element falls in the region where the non-Newtonian viscosity is expected. A comparison with some published experimental results by Bair and Khonsari is presented.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3