Homotopy Simulation of Non-Newtonian Spriggs Fluid Flow Over a Flat Plate with Oscillating Motion

Author:

Ray A.K.1,Vasu B.1,Gorla R.S.R.2

Affiliation:

1. Department of Mathematics, Motilal Nehru National Institute of Technology , Allahabad , India

2. Department of Mechanical Engineering , Cleveland State University , Ohio , USA

Abstract

Abstract An incompressible flow of a non-Newtonian Spriggs fluid over an unsteady oscillating plate is investigated using the Homotopy Analysis Method (HAM). An analytic solution of sine and cosine oscillations of the plate has been obtained. The similarity transformation is introduced to reduce the governing partial differential equations into a single non-linear dimensionless partial differential equation. The effects of the power index of Spriggs fluid and convergence control parameter of HAM for the flow are studied extensively. The range of the convergence control parameter for convergence of series solution for different values of the power index of Spriggs fluid is obtained. The solution for a Spriggs fluid is noticeably different from the solution obtained for a Newtonian fluid. The influences of the shear thinning and shear thickening fluid on the velocity profile are shown graphically. The transient flow effect is higher for non-Newtonian Spriggs fluid than that of a Newtonian fluid. It is also observed that the interval to reach the steady state for the cosine case is less than the sine case. The applications of Stokes’ second problem have been widely found in the variety of fields of biomedical, medical, chemical, micro and nanotechnology.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3