Affiliation:
1. Imperial College of Science, Technology and Medicine Department of Mechanical Engineering London
Abstract
A theoretical simulation of the behaviour of debris particles in elastohydrodynamic (EHD) contacts is an effective means for obtaining information regarding the life and performance of lubricated machine elements compared with costly experimentation. The present work indicates that debris particles are often responsible for two failure modes: (a) scuffing caused by particle agglomeration in the inlet zone of an EHD contact and (b) local melting due to high heat produced by the friction of debris in sliding contacts. The present predictions are in agreement with experimental evidence in two ways: firstly, in that EHD contacts may fail because of scuffing if the lubricant becomes contaminated, where the failure due to inlet blockage by debris and eventually fluid starvation, and, secondly, in that sliding asperity contacts encounter high flash temperatures which may cause local melting and thus plastic deformations.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献