The effect of aviation anti-wear additives on tribofilm formation and micropitting propensity

Author:

Airey Jake12ORCID,Simpson James2,Spencer Matthew1,Greenwood Richard W2,Simmons Mark JH2

Affiliation:

1. Materials Engineering, Rolls-Royce plc, Derby, UK

2. School of Chemical Engineering, University of Birmingham, Edgbaston, UK

Abstract

This article studies the effect of anti-wear additives on micropitting and tribofilm formation. In particular, anti-wear additives used in aviation applications have been compared against a commonly used automotive anti-wear additive (zinc dialkyldithiophosphate ((ZDDP)) that is known to promote micropitting. All tests were performed under test conditions representative of the Power GearBox within Rolls-Royce's new engine, the UltraFan©. Tests using a micropitting rig found that ZDDP formed micropits the fastest, which then propagated onto the largest amount of wear showing the catastrophic effects of micropitting. Whereas other aviation anti-wear additives, such as tricresyl phosphate and additive X, formed micropits more slowly but faster than the formulation without additives containing only base oil. Focus variation microscopy was used to characterise the micropits and found that ZDDP formed smaller and shallower micropits than the other anti-wear additives, and as a result, the wear track of the ZDDP roller had the lowest roughness. The unadditised base oil, whilst it generated micropits more slowly, propagated quickly to a more severe failure mode, showing the harmful effects of having no anti-wear additive present. The profilometer results showed the counterface ring roughness for ZDDP remained the highest, confirming that ZDDP forms a tribofilm quickly. This protects asperities, which consequently promotes micropitting, as high localised asperity contact pressures are maintained. This was further confirmed by evaluating the tribofilms using a mini traction machine with spacer layer imaging to form tribofilms under representative conditions. This demonstrated that ZDDP forms a thicker tribofilm than the aviation anti-additives and at a faster rate. Overall, the study showed that the aviation anti-wear additives promote micropitting less than ZDDP but more than base oil alone. The slower action of the tribofilm formation allows the initial running-in of surfaces, which slows down the initiation of micropitting.

Funder

EPSRC Centre for Doctoral Training in Formulation Engineering

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Reference59 articles.

1. The effect of gas turbine lubricant base oil molecular structure on friction

2. Stachowiak G, Batchelor AW. Chapter 8: boundary and extreme pressure lubrication. Engineering Tribology. 3rd ed. 2011, pp. 425–484.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3