Oil flow in plain steadily loaded journal bearings: Realistic predictions using rapid techniques

Author:

Martin F. A.1

Affiliation:

1. Consultant to The Glacier Metal Company Limited Northwood Hills, Middlesex

Abstract

The aim of the paper is to produce a rapid calculation method for predicting lubricant flow in plain cylindrical journal bearings. Lubricant flow data, already available from rigorous solutions considering the effect of film reformation, are used together with experimental evidence to develop unique graphical aids and flow prediction equations. These equations, although developed from specific flow data, are of a general form and therefore will be applicable to a wide range of different bearing operating conditions. Graphical aids, from which the flow equations are derived, give normalized actual flow as a function of normalized hydrodynamic flow for different groove geometries. The main input parameters, namely a hydrodynamic flow term Qh and a feed pressure flow term Qp, are easy to derive and have been in common use in bearing design techniques over many decades. The new design aids, in chart and equation form, give realistic flow predictions for bearings with an oil hole, a groove opposite the load line, an axial groove at the maximum film thickness position and the commonly used case of a bearing with two axial grooves. The flow prediction equations are supported by experimental data.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Reference15 articles.

1. Engineering Sciences Data Unit, ESDU data item 66023, Calculation methods for steadily loaded pressure fed hydrodynamic journal bearings. September 1966 (ESDU International plc, London).

2. Engineering Sciences Data Unit, ESDU data item 84031, Calculation methods for steadily loaded axial groove hydrodynamic journal bearings. November 1984 (ESDU International plc, London).

3. A Cavitation Algorithm

4. Implementation of an algorithm enabling the determination of film rupture and reformation boundaries in a liquid film bearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3