Robust variable structure attitude control with L2-gain performance for a flexible spacecraft including input saturation

Author:

Hu Q1,Friswell M I2

Affiliation:

1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China

2. School of Engineering, Swansea University, Swansea, UK

Abstract

This paper presents the design of a robust controller, based on variable structure control, for the rotational manoeuvring and vibration reduction of a flexible spacecraft with input saturation. The dynamic equations of motion are formulated as a finite dimensional mathematical model, but accounting for the infinite number of natural vibration modes of the flexible appendages. Based on this model, a variable structure controller is designed for rotational manoeuvres and vibration suppression, and its exponential stability is demonstrated. The synthesis of the control system assumes that only the pitch angle and its derivative are accessible for feedback, and that the flexible modes are not measured. Saturation limits are introduced into the controller design to cope with the actuation limitations, and the stability of the modified control solution is verified. The prescribed robust performance is obtained by ensuring that the L2-gain synthesis, from a torque disturbance to the penalty output, is less than a specified level. Simulation results are presented for the attitude manoeuvring and elastic mode stabilization of an orbiting flexible spacecraft; these results demonstrate the excellent performance of the proposed controller and illustrate its robustness to external disturbances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unwinding-free composite full-order sliding-mode control for attitude tracking of flexible spacecraft;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-08-13

2. Bounded Finite-Time Coordinated Attitude Control via Output Feedback for Spacecraft Formation;Journal of Aerospace Engineering;2015-09

3. Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation;Aerospace Science and Technology;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3