Affiliation:
1. School of Automation, Southeast University, and Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing, China
Abstract
In this paper, the attitude tracking control problem is investigated for flexible spacecraft. A novel feedforward-feedback composite control scheme is proposed based on the combination of a generalized proportional integral observer (GPIO) and the full-order sliding-mode control technique. To estimate the lumped disturbances composed of the flexible appendages’ vibration, external environmental disturbance and model uncertainty, a generalized proportional integral observer is firstly constructed. Then, a two-layer recursive full-order sliding-mode surface is developed, where the inner layer is designed as linear sliding-mode surface and the outer layer is designed as a terminal sliding-mode surface. With the feedforward compensation of the GPIO’s estimates, a continuous unwinding-free composite attitude tracking controller is derived to achieve the finite-time arrival of the full-order sliding-mode surface and further ensure the asymptotic set convergence of the attitude tracking errors. Rigorous set stability analysis of the closed-loop attitude tracking error system is given. Comparative simulations are presented to demonstrate the effectiveness and superiority of the proposed composite control scheme.
Funder
National Natural Science Foundation of China