Affiliation:
1. Mechanical and Aerospace Engineering Department, Nanyang Technology University, Singapore
Abstract
The current paper proposes a robust and decoupled cascaded control system with output feedback control for simultaneous stabilization and pipeline tracking of a remotely operated vehicle (ROV) under hydrodynamic uncertainties. One of the ROV applications on the simultaneous stabilization and tracking was global output feedback with backstepping method on an ODIN ROV. However, the controller design becomes complex, as partial differential equations are required in the backstepping control law and the ROVs is inherently non-linear, highly coupled in motion, unsymmetrical in vehicle design, and vulnerable to hydrodynamic uncertainties. Compared with the backstepping control and other controllers, the computer simulation shows that the proposed method is simpler and performed better in time domain response and other performance measures such as robustness and stability.
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献