A basic study on a urea-selective catalytic reduction system for a medium-duty diesel engine

Author:

Kusaka J1,Sueoka M1,Takada K1,Ohga Y1,Nagasaki T1,Daisho Y1

Affiliation:

1. Waseda University Department of Mechanical Engineering Tokyo, Japan

Abstract

NOx conversion performance of a urea-selective catalytic reduction (SCR) system comprising V2O5/TiO2 catalyst under steady state operating conditions of an 8-litre, common-rail turbo direct injection (TDI) diesel engine was investigated. It was shown that the urea-SCR system achieves 70–90 per cent NOx conversion under medium and high load conditions at 1440 r/min and that NOx conversion is low under low load conditions because of the low catalyst temperatures and the NO/NO2 ratio being higher than unity. It was also shown that NOx conversion exceeds 90 per cent when the catalyst temperature is higher than 530 K. To investigate the details of the chemistry and thermofluid dynamics within the urea-SCR system, a computational fluid dynamics (CFD) code that incorporates detailed surface chemistry was developed based on the modified subroutines of CHEMKIN-II. The spatial variations of chemical species including NO and NH3 in a thin catalyst channel was calculated using the model. The calculated result of NO conversion showed relatively good agreement with experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3