Affiliation:
1. Waseda University Department of Mechanical Engineering Tokyo, Japan
Abstract
NOx conversion performance of a urea-selective catalytic reduction (SCR) system comprising V2O5/TiO2 catalyst under steady state operating conditions of an 8-litre, common-rail turbo direct injection (TDI) diesel engine was investigated. It was shown that the urea-SCR system achieves 70–90 per cent NOx conversion under medium and high load conditions at 1440 r/min and that NOx conversion is low under low load conditions because of the low catalyst temperatures and the NO/NO2 ratio being higher than unity. It was also shown that NOx conversion exceeds 90 per cent when the catalyst temperature is higher than 530 K. To investigate the details of the chemistry and thermofluid dynamics within the urea-SCR system, a computational fluid dynamics (CFD) code that incorporates detailed surface chemistry was developed based on the modified subroutines of CHEMKIN-II. The spatial variations of chemical species including NO and NH3 in a thin catalyst channel was calculated using the model. The calculated result of NO conversion showed relatively good agreement with experimental results.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献