An investigation of using various diesel-type fuels in homogeneous charge compression ignition engines and their effects on operational and controlling issues

Author:

Milovanovic N1,Chen R1,Dowden R2,Turner J3

Affiliation:

1. Loughborough University Aeronautical and Automotive Department Loughborough, Leicestershire, UK

2. Swansea Institute of Higher Education School of Automotive Engineering Swansea, Wales, UK

3. Lotus Engineering Powertrain Research Department Hethel, Norfolk, UK

Abstract

Homogeneous charge compression ignition (HCCI) engines appear to be a future alternative to diesel and spark-ignited engines. The HCCI engine has the potential to deliver high efficiency and very low NOx and particulate matter emissions. There are, however, problems with the control of ignition and heat release range over the entire load and speed range which limits the practical application of this technology. The aim of this paper is to analyse the use of different types of diesel fuels in an HCCI engine and hence to find the most suitable with respect to operational and control issues. The single-zone combustion model with convective heat transfer loss is used to simulate the HCCI engine environment. n-Heptane, dimethyl ether and bio-diesel (methyl butanoate and methyl formate) fuels are investigated. Methyl butanoate and methyl formate represent surrogates of heavy and light bio-diesel fuel respectively. The effects of different engine parameters such as equivalence ratio and engine speed on the ignition timing are investigated. The use of internal exhaust gas recirculation is investigated as a potential strategy for controlling the ignition timing. The results indicate that the use of bio-diesel fuels will result in lower sensitivity of ignition timing to changes in operational parameters and in a better control of the ignition process when compared with the use of n-heptane and dimethyl ether.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3