Prospective fuels for diesel low temperature combustion engine applications: A critical review

Author:

Krishnasamy Anand1ORCID,Gupta Saurabh K1,Reitz Rolf D2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

2. Engine Research Centre, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Low Temperature Combustion (LTC) strategies are most promising to simultaneously reduce oxides of nitrogen (NOx) and soot emissions from diesel engines along with offering higher thermal efficiency. Commercial wide spread implementation of diesel LTC strategies requires several challenges to be addressed, including lack of precise ignition timing control, widening the narrow operating load ranges and reducing high unburned fuel emissions. These challenges can be addressed through modifications in the engine or fuel design or both. The timing and rate of combustion in several LTC strategies are controlled primarily by the chemical kinetics of the fuel. Since, diesel fuel reactivity and volatility are tailor-made to perform well under conventional diesel combustion conditions, its application in LTC poses several problems, as highlighted in this paper. Hence, it is important to identify suitable alternative fuels for the different diesel LTC strategies. The published literature on LTC over the past 25 years is critically analyzed to discuss the evolution of the different diesel LTC strategies, their operability limits, the challenges and the controlling parameters for each strategy. This is followed by in-depth analysis of the role of the fuel and the fuel requirements for each strategy. Further, the importance of adopting a hybrid surrogate modeling approach to enable numerical simulation of diesel LTC is highlighted. A novel attempt of relating various diesel low temperature combustion (LTC) strategies based on the approach followed to achieve positive ignition dwell through different injection strategies, utilizing high exhaust gas recirculation (EGR), and dual fuels is presented. The need for replacing diesel with alternative liquid fuels in LTC strategies is presented by highlighting the fundamental problems associated with diesel fuel characteristics. The review concludes by suggesting potential alternative fuels for various diesel LTC strategies and provides directions for future work to address the challenges facing compression ignition LTC operation.

Funder

indian institute of technology madras

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3