Affiliation:
1. Delph Research Labs, Shelby Township, Michigan, USA
2. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
Abstract
A microgenetic algorithm (μGA) code was applied to optimize experimentally an HSDI single-cylinder diesel engine equipped with a common rail fuel-injection system in order to reduce NOx, soot, and b.s.f.c. simultaneously. Four control factors were used, namely, start-of-injection (SOI) timing, intake boost pressure level, cooled exhaust gas recirculation (EGR) rate, and fuel-injection pressure. The search space was designed to be within the experimental capabilities of the engine and control system. The engine testing was done at 1550 r/min, and 25 per cent load. The optimum results showed significant improvements for the NOx and soot emissions. Through analysis of the combustion characteristics, the mechanisms of emission reduction were revealed. The optimum featured a long ignition delay due to retarded SOI timing, and low combustion temperatures as a result of high EGR rates. The resulting long time for mixing and low temperatures helps suppress soot formation. To explore further the effect of mixing on emissions in the low-temperature combustion regime, factors that enhance turbulent mixing rates, including the use of high injection pressures and post injections were examined. The results show that optimal post injections are useful further to reduce emissions when they feature a short injection pulse with an optimal dwell time between injections.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献