Finite element analysis of the geometric stiffening effect. Part 1: A correction in the floating frame of reference formulation

Author:

García-Vallejo D1,Sugiyama H2,Shabana A A2

Affiliation:

1. University of Seville Department of Mechanical and Materials Engineering Seville, Spain

2. University of Illinois at Chicago Department of Mechanical and Industrial Engineering Chicago, Illinois, USA

Abstract

The fact that incorrect unstable solutions are obtained for linearly elastic models motivates the analytical study presented in this paper. The increase in the number of finite elements only leads to an increase in the critical speed. Crucial in the analysis presented in this paper is the fact that the mass matrix and the form of the elastic forces obtained using the absolute nodal coordinate formulation remain the same under orthogonal coordinate transformation. The absolute nodal coordinate formulation, in contrast to conventional finite element formulations, does account for the effect of the coupling between bending and extension. Based on the analytical results obtained using the absolute nodal coordinate formulation, a new correction is proposed for the finite element floating frame of reference formulation in order to introduce coupling between the axial and bending displacements. In this two-part paper, two- and three-dimensional finite element models are used to study the problem of rotating beams. The models are developed using the absolute nodal coordinate formulation that allows for accurate representation of the axial strain, thereby avoiding the ill-conditioning problem that arises when classical displacement-based finite element formulations are used. In the first part of the paper, the case of linear elasticity is considered and assumptions used in the finite element floating frame of reference formulation are investigated. In the second part of the paper, non-linear elasticity is considered. A rotating helicopter blade is simulated, and the complexity of the motion suggests the inclusion of rotary inertia, shear deformation, and non-linear elastic forces in order to obtain an accurate solution that does not suffer from the instability problem regardless of the number of finite elements used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3